SSA No 1

Improvement of management measures for the pikeperch stock in Pärnu Bay (Gulf of Riga)

Evald Ojaveer ${ }^{1}$ Timo Arula ${ }^{1}$ Maija Balode ${ }^{2}$ Bärbel Müller-Karulis ${ }^{2}$

${ }^{1}$ Estonian Marine Institute, University of Tartu, evald.ojaveer@ut.ee ${ }^{2}$ Latvian Institute of Aquatic Ecology, maija@hydro.edudv

PROBLEM SCALING

$>$ Pikeperch of Pärnu Bay is a valuable natural resource. It offers subsistence, engagement and income for coastal population and is a valuable export article. Pikeperch is a very important biomeliorator converting the biomass of inferior fish species into expensive pikeperch biomass. It endures moderate eutrophication.
$>$ During "open market" system it experienced extremly high fishing preasure, however natural conditions should favour forming abundant year-classes and increased stock biomass.

PÄRNU BAY PIKE-PERCH - CONCEPTUAL MODEL

We have selected a local fish stock, Pärnu Bay pike-perch, to demonstrate the interaction between eutrophication, fish production, management actions, climate change;
 during last decade

POLICY ISSUE "Interaction between
fisheries managment \& fish production"

MODEL FORMULATION\&POLICY-STAKEHOLDER

 INVOLVMENT
Main model blocks:

- Pike-perch juvenile survival
- Immature piscivorous pike-perch (ages $2-4$)
Mature pike-perch (ages 5 - 10+)
Parnu Bay productivity
- Summer and winter temperature

Fishery
Climate change
Step-wise refinement of model blocks
User interaction via parameter database and slider utilities
Model output storage in Extend databases
Verification with pike-perch VPA output from 1970-1999

Pärnu Bay pike-perch

- local pike-perch stock, non-migratory
- economically most valuable species
- high fishing pressure, vulnurable due to late maturity
- experience with local quota and recruitment enhancment
- probably benefits from eutrophication via increase of Gulf of Riga productivity and stocks of forage fish (herring)
- increased water temperatures in Baltic sea enhance survival of YoY

Year - class formulation \& stock exploitation
 $\log \frac{N_{i}^{1}}{S S B_{i-1}}=a+b \cdot S S B_{i-1}+c \cdot \log \left(\right.$ Goby $\left._{i-1}\right)+s\left(\right.$ Temp $\left._{i-1}\right)+s\left(\right.$ Ice $\left._{i-1}\right)$ Pike-perch length distribution $(1, \mathrm{~cm})$ in commercial

Stock clearly suffers under overexploitation of
immatured fish

MODEL PERFORMANCE

Standing stock biomass (left column) and catch (right column) in equilibrium with different levels of fishing mortality, assuming no (top row) or significant catch (bottom row) of immature, undersized fish. Lines correspond to average (red) simulated SSB and catch, together with 5% and 95% percentiles (grey). Markers denote observed SSB and catches (Eero 2004) with no (circles) and significant (triangles) catch of immature fish.

The stakeholder group formed met approximately twice per year and consisted of representatives from nine organizations ; $>$ Fisheries department of the Ministry of the Environment of Estonia,
$>$ Ministry of Agriculture of Estonia, $>$ Environment Board and Environment Inspection of Pärnu county,
>Estonian Marine Institute of the University of Tartu,
$>$ Organization of professional fishermen of the Pärnu county,
$>$ Union of the Gulf of Riga fishermen, $>$ Fishery companies "Pärnu Bay" and "Japs".

